Code: 20ME2601A

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

VALUE ENGINEERING

(Common to All Branches)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	What is Value Engineering? Enumerate its	L2	CO1	7 M		
		advantages and applications.					
	b)	How do you recognize a problem using	L2	CO1	7 M		
		Value Engineering? Explain.					
OR							
2	a)	Describe the significance of Value	L2	CO1	7 M		
		Engineering in an organization.					
	b)	How can one evaluate the ideas for	L2	CO1	7 M		
		implementing Value Engineering? Explain.					
UNIT-II							
3	a)	What are the orientation and information	L2	CO2	7 M		
		phases of Value Engineering job plan?					
		Explain.					

	b)	Explain various methods selection for	L2	CO2	7 M			
		implementing Value Engineering.						
OR								
4	a)	How can one select the project for	L2	CO2	7 M			
		implementing Value Engineering? Explain.						
	b)	What are the speculation and analysis	L2	CO2	7 M			
		phases of Value Engineering job plan?						
		Explain.						
UNIT-III								
5	a)	How do you determine and evaluate the	L2	CO3	7 M			
		function(s) assigning rupee equivalents in						
		Value Engineering techniques? Explain.						
	b)	Explain the Value Engineering programmes.	L2	CO3	7 M			
	1	OR		, ,				
6	App	ply the Function Analysis System Technique	L3	CO3	14 M			
	(FA	AST) for any product of your interest and						
	exp	lain with a sketch.						
	I .	UNIT-IV						
7	a)	Discuss the maintenance and repair cost	L2	CO3	7 M			
		during service life of a product while						
		implementing the Value Engineering.		~ ~ ~				
	b)	Explain the application of Value	L3	CO3	7 M			
		Engineering in enhancing the non-hardware						
		projects utility.						
	OR							
8	a)	How do you initiate a value engineering	L2	CO3	7 M			
		programme? Explain in detail.						

	b)	Articulate about the career development for	L3	CO3	7 M				
		value engineering specialists.							
UNIT-V									
9	a)	Identify the functions associated with the	L2	CO4	7 M				
		designer of Value Engineering team.							
	b)	Describe the process of implementation of	L2	CO4	7 M				
		value engineering programme in a							
		construction project.							
	OR								
10	Der	nonstrate a case study that how the cost can	L3	CO4	14 M				
	be reduced by using value engineering in any								
	organization for any product or service.								